Extremal graph theory and finite forcibility

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Graph Theory

3 Third Lecture 11 3.1 Applications of the Zarankiewicz Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 The Turán Problem for Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 The Girth Problem and Moore’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Application of Moore’s Bound to Graph Spanners . . . . . . . . . . . ....

متن کامل

Extremal infinite graph theory

We survey various aspects of infinite extremal graph theory and prove several new results. The lead role play the parameters connectivity and degree. This includes the end degree. Many open problems are suggested.

متن کامل

Extremal Graph Theory

Extremal graph theory is, broadly speaking, the study of relations between various graph invariants, such as order, size, connectivity, minimum/maximum degree, chromatic number, etc., and the values of these invariants that ensure that the graph has certain properties. Since the first major result by Turan in 1941, numerous mathematicians have contributed to make this a vibrant and deep subject...

متن کامل

Notes on Extremal Graph Theory

What you see below are notes related to a course that I have given several times in Extremal Graph Theory. I guarantee no accuracy with respect to these notes and I certainly do not guarantee completeness or proper attribution. This is an early draft and, with any luck and copious funding, some of this can be made into a publishable work and some will just remain as notes. Please do not distrib...

متن کامل

Discrete Geometry and Extremal Graph Theory

In 1946, Paul Erdős proposed the following problem: what is the maximum number of unit distances among n points in the plane? Erdős established an upper bound of cn3/2 and a lower bound that grows slightly faster than n. A graph is a collection of “vertices” and “edges” connecting some pairs of vertices. For example, in an airline route chart, airports are the vertices and direct connections co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Discrete Mathematics

سال: 2017

ISSN: 1571-0653

DOI: 10.1016/j.endm.2017.07.005